2013 추계학술발표회 논문집
2013년 11월 15일~16일
제주대학교
47. VoD 서비스를 위한 DASH 시스템 구현 .. 이윤녕·강상해·우지석·조용재·엄준영·이창근 973
48. mVDI를 위한 센서 연동 기법 구현 ... 봉재식·신영록·허의남 976
49. Learning to Estimate Traffic Matrix for M2M Management ... Rossi Kamal·Mi Jung Choi·Choong Seon Hong 979
50. 지동차 통신에서 BSM 메시지 전송 주기가 거리 오차에 미치는 영향 임승헌·김효곤 982
51. 카시세트 시스템용 데이터 분석 성능 향상 방법 .. 정호영·김인호·엄영운·김태희·최재훈·최현 984
52. 해상교통관제시스템에서 효율적인 데이터베이스 구축 방법 오승희·이병길 987
53. Cluster-based Cooperative Caching and Forwarding in CCN ... Kyi Thar·Choong Seon Hong 990
54. CCN TV 서비스를 위한 콘텐츠 권한 설정 및 제어 메커니즘 ... 조용준·홍충선 993
55. 콘텐츠 중심 네트워크에서 효율적인 콘텐츠 전송을 위한 콘텐츠 콘트롤러를 이용한 .. 하팅·홍충선 996
56. Cost-optimized Selection of CaaS Provider in Cloud Brokering Architecture for Cloud Based Healthcare Services ... Md. Golam Rabiul Alam·Choong Seon Hong 998
57. 콘텐츠 중심 네트워크에서 중간 간부의 효율적인 Interest 패킷제어 기법 ... 상현진·홍충선·이상범 1001
58. 학술적 연구분석 서비스를 위한 평가모델 .. Mazhar Sajjad·김장원·김진형·황영권·송사광·정도훈·이성호·김동신 1004
59. 콘텐츠 중심 네트워크에서 포괄적 인터페이스 보안 분석 ... 김규영·이영균 1007
60. 클라우드 컴퓨팅 환경에서 실시간 서비스 결합을 위한 Smart SLA Composition 기술 ... 상영목·홍충선 1009
61. 클라우드 컴퓨팅 환경에서의 효율적인 자원 활용을 위한 마이크로파일 구조 설계 손아영·허의남 1011
62. 웹-리두스 기반의 범위 질의 처리를 위한 효율적인 인터넷 기법과 성능 평가 박준호·오현교·김기연·류은경·손인국·복경수·유재수 1014
63. 거리 학습과 k-nearest neighbor 분류기를 이용한 음악 장르 분류 장달원·신사임·이종설·장성준·임태범 1017
한국정보과학회
제40회 정기총회 및 추계학술발표회
2013년 11월 15일(금)~16일(토)
제주대학교
http://www.kiise.or.kr/conference02/
P4.4-08 Cost-optimized Selection of CaaS Provider in Cloud Brokering Architecture for Cloud Based Healthcare Services
Md. Golam Rabiul Alam・Choong Seon Hong(경희대)

P4.4-09 콘텐츠 중심 네트워크에서 중간 라우터의 효율적인 Interest 패킷 제어 기법
성태진・홍중순・이성원(경희대)

P4.4-10 학술적 연구 분석 서비스를 위한 평가 모델
Mazhar Sojoodi・김정원・김진형・황상관・이승우・정진민(KISTI)

P4.4-11 (학부생 논문) 확장된 UDP를 활용한 N스크린 환경의 구현
박재만・한지훈・김호민(고려대)

P4.4-12 클라우드 데이터 센터상의 전달된 가상머신 마이그레이션 기법 설계의 필요성 연구
김규영・이원준(고려대)

P4.4-13 클라우드 컴퓨팅 환경에서 실시간 서비스 결합을 위한 Smart SLA Composition 기술
성영훈・정재식・허의남(경희대)

P4.4-14 클라우드 컴퓨팅 환경에서의 효율적인 자원 활용을 위한 마이그레이션 구조 설계
손아영・한상권(경희대)

P4.4-15 메이트리스 기반의 범위 질의 처리를 위한 효율적인 인덱스 저장 기법과 성능 평가
박준호・오현교・김기연・류은경・손인규・염재범(충남대)

P4.4-16 거리 학습 및 k-nearest neighbor 분류기를 이용한 음악 장르 분류
김혜림・김성지・울상만・임태범(성균관대)

P4.4-17 (학부생 논문) NXC 프로그램을 이용한 지능적 군집로봇 제어 방법 연구
김종관・조정욱・서의성・전성익・김기연・하성호・권재수(충북대)

P4.5 컴퓨터시스템 III

<table>
<thead>
<tr>
<th>11.16(토) 11:20~12:40 / 공대4호관 지하1층 로비&복도</th>
</tr>
</thead>
<tbody>
<tr>
<td>평가위원A : 성민영(서울시립대)</td>
</tr>
<tr>
<td>평가위원B :</td>
</tr>
</tbody>
</table>

P4.5-01 택배 물품의 이상화탄소 배출량 예측 방법 및 구현
조수형・김태화・정현택(전자부품연구원)

P4.5-02 OpenGL 그래픽 성능 향상을 위한 장치 가상화 프레임워크
주영현・이동우・엄영익(성균관대)

P4.5-03 N-스크린 환경에서 끊김 없는 화면전환을 위한 모바일 P2P 네트워크 기반 콘텐츠 프리페치 기법 설계
김해림・김성조(중앙대)

P4.5-04 이기종 스마트 기간 협업 서비스를 위한 클라우드 기반 윈다비.POST 게이트웨이
김종관・조정욱・서의성(성균관대)

P4.5-05 리눅스 커널 수준 DVFS governor 에너지 효율 개선 및 정량적 분석
이동호・안백승・전성익(ETRI)

P4.5-06 멀티코어 컴퓨터 시스템의 소모 전력 추정을 위한 간단한 전력 모델
김민중・김광호・박문주(인천대)
클라우드 컴퓨팅 환경에서 실시간 서비스 결합을 위한

Smart SLA Composition 기술

신영록, 봉재식, 허의남
경희대학교 컴퓨터공학과
{shinyr, escat, johnhuh}@khu.ac.kr

Smart SLA Composition for Real-time Service Integration
in Cloud Computing Environment

Young-Rok Shin, Jae-Sic Bong, Eui-Nam Huh
Department of Computer Engineering, Kyung Hee University

요 약
클라우드 컴퓨팅은 사용자 이동 단말의 등장과 함께 급격한 발전을 이루게 되었다. 그와 함께 클라우드 서비스 제공자의 협업을 통해 서비스 확장 할 수 있는 구조를 가지게 되었으나, 실시간으로 서비스 결합을 위한 기술은 제공되고 있지 않다. 이를 위하여 본 논문에서는 기존 클라우드 서비스에 대한 문제점 을 도출하고 클라우드 브로커링 서비스를 위한 구조와 함께 Smart SLA Composition 기술을 이용한 구조를 제안하고 그를 적용한 기대효과를 기술한다.

1. 서 론

사용자 이동 단말의 등장과 함께 클라우드 컴퓨팅 기술은 급격한 발전을 이루게 되었으며, 인프라, 플랫폼, 소프트웨어 동물 로컬 컴퓨팅에서 사용하기 어려운 원격자의 가상 환경에서 사용할 수 있게 되었다. 이와 같은 클라우드 컴퓨팅은 협업을 통해 각 서비스 제공자 들의 서비스를 결합하여 확장할 수 있는 장점을 갖추게 되었다. 이와 같은 클라우드 컴퓨팅 환경에서는 클라우드 서비스 제공자와 클라우드 서비스 사용자 간의 서비스 결합과 추천을 제공할 수 있는 클라우드 서비스 브로커(Cloud Service Brokerage)의 개념이 등장하였다. 클라우드 서비스 브로커란 클라우드 서비스 제공자와 클라우드 서비스 사용자 사이에서 서비스를 전달함으로써 클라우드 서비스 제공자와 사용자에게 이익을 줄 수 있는 중간 매개체이다. 이와 같은 클라우드 브로커를 통하여 클라우드 서비스를 확장할 수 있다.

하지만, 실시간으로 클라우드 서비스를 결합함에 있어 서로 상이한 SLA를 가지고 있어 그에 대한 내용을 분석하고, 사용자에게 제공할 수 있게 한다. 하지만, 현재와 클라우드 컴퓨팅 환경에서는 실시간으로 서비스를 결합하고, SLA를 분석하는 기술을 제공하지 않는 다. 그리하여 본 논문에서는 클라우드 서비스 브로커에 실시간 서비스 결합을 위한 Smart SLA Composition 기술을 제안한다. 2장에서는 현재 제공되고 있는 클라우드 브로커링 서비스에 대해 기술하고, 기존의 브로커링 서비스의 문제점을 도출한다. 3장에서는 도출한 문제점을 해결하기 위한 클라우드 서비스를 결합하기 위한 Smart SLA Composition 기술을 구조를 기술하며, 4장에서는 Smart SLA Composition 기술이 제공된 것으로 기대되는 효과를 기술하면서 결론을 맺는다.

2. 관련 연구

현재 제공되고 있는 클라우드 서비스는 결합된 서비스가 아닌 단일 클라우드 서비스이며, 클라우드 서비스 사용자는 제공자가 이미 결정해 둔 서비스 목록에서 서비스를 결정하는 형태이다. 이러한 형태는 클라우드 컴퓨팅 환경에서 서비스 결합을 통하여 가격결정의 최적화를 통하여 새로운 SLA를 도출하게 되며, 이는 클라우드 서비스 브로커를 통해 구현할 수 있다.

아마존은 Spot Price라는 방법을 이용하고 있다. 이 방법은 서비스가 제공되고 있는 어느 순간에 서비스 사용량에 따라 가격을 결정하는 것으로 많은 서비스 요구량이 있을 때에는 가격을 높게 책정하는 것이고, 서비스 요구량이 적을 때에는 가격을 낮게 책정하여 동일한 서비스 가격을 사용자에게 제공한다. [2]의 경우는 클라우드 서비스 제공을 위하여 기존의 정적 가격결정(Static Pricing)에서 벗어나 서비스 사용량에 따른 동적 가격결정(Dynamic Pricing)을 제공하고자 하였다. 이와 같은 가격결정 정책은 서비스 제공자가 사용자를 배려하여 더 낮은 가격으로 서비스를 제공하는 것처럼 보일 수 있으나, 결과적으로 서비스 제공자에게 최대의 요구를 부과하기 위한 방안을 제안하고 있다. [3]에서는 클라우드 서비스를 제공하기 위해 서비스 제공자와 사용자는 마켓에서 만나게 되고, 할당을 하게 되는데 그 상황에서 필요한 것이 바로 SLA(Service Level Agreement)라고 인
급하였다. 또한, 서비스를 제공하는데 있어 클라우드 마켓 내에서 경쟁을 통하여 적절한 가격을 형성하고 제공할 수 있어야 한다고 한다. 하지만 이와 같은 제한 역시 서비스 제공자에게 최대의 이익을 얻을 수 있는 방안에 대해 제안하고 있다. 하지만 이와 같이 기존의 클라우드 서비스는 단일 클라우드 컴퓨팅 환경에서의 연구만이 진행되고 있으며, 클라우드 서비스 정책을 위해서는 제한적인 클라우드 환경 구조를 가지고 있다. 그를 위하여 실험적으로 클라우드 서비스를 정책하위 Smart SLA Composition 기술의 필요성 및 그를 위한 클라우드 컴퓨팅 환경 구조를 제안한다.

3. 제안하는 클라우드 브로커링 서비스 구조

제안하는 클라우드 브로커링 서비스의 구조는 그림 1과 같으며, 클라우드 마켓을 중심으로 클라우드 서비스 제공자와 사용자가 그리고 클라우드 서비스 브로커로 구성된다.

그림 1. 제안하는 클라우드 브로커링 서비스 구조

정보화 서비스 브로커는 연결된 클라우드 서비스 제공자와의 통신을 통하여 서비스를 클라우드 마켓에 등록하며, 사용자의 선택에 따라 서비스 제공자의 대신 SLA를 통한 계약을 진행한다. 이와 같은 과정에서 클라우드 서비스 제공자 간의 협업을 통하여 서비스 제공이 수행되며, 각각 다른 SLA를 가진 서비스를 결합함으로써 새로운 서비스를 제공할 수 있게 된다. 이를 통하여 새로운 SLA를 제공하게 되며, 이를 다차원 SLA(Multi-Dimensional SLA)라고 정의한다.

제안하는 클라우드 브로커링 서비스 구조 내에서 Smart SLA Composition 기술을 위한 구조는 그림 2와 같다. 이는 서로 다른 클라우드 서비스 제공자가 보유하고 있는 서비스의 결합으로 인하여 생성된 새로운 서비스를 위해서는 서비스 사용자가 다수의 SLA를 고려하여야 한다. 이와 같은 경우 클라우드 서비스 사용자는 많은 비교를 수행하여야 할 것이나, 클라우드의 기능을 대신할 수 있도록 서비스 사용자가 고려해야 할 방안이 단순해진다. 이와 같은 구조에서 다중 수준 서비스 레벨을 관리하며, 새로운 SLA 수립 수행을 위해 브로커를 이용한다.

4. 결론

최근 국외 표준기구에서 클라우드 참조 구조가 제시되고 있으며, 클라우드 서비스 브로커가 한 요소로 정의되어 있어 기존의 단일 클라우드 서비스의 한계를 극복할 수 있다. 하지만 구체적 프레임워크나 역할에 대한 부분이 미세하며, 다양화되고 복잡해지며 있어 클라우드 측정에서의 여러가지가 지속되고 있다. 이와 같은 환경에서 클라우드 서비스의 결합 클라우드 서비스 브로커를 통하여 제공될 수 있으며, 이를 위해서는 Smart SLA Composition 기술이 필요하다. 이와 같은 기술은 국외적으로 시작되지 않은 연구로 파악되며, 기술 자체가 차별성을 가지고 있어, 많은 연구가 필요할 것으로 기대된다.

참고문헌

Acknowledgement

본 연구는 미래창조과학부 및 정보통신산업진흥원의 IT융합 고급인력과정 지원사업의 연구결과(NIPA-2013-H0301-13-4006) 및 2013년 정부(교육부)의 재원으로 한국연구재단의 지원(No.NRF-2013R1A1A2013620)을 받아 수행되었음. 교신저자 : 허의남.