2010년도
정기총회 및 추계학술발표대회

일 시: 2010년 10월 29일(금) ~ 10월 30일(토)
주 최: 한국인터넷정보학회
주 관: 광주대학교
후 원: 한국과학기술정보연구원, 삼성SDS(주), 한국인터넷진흥원(KISA), (주)LG CNS, SKC&C(주), 디에스인포(주), 한국정보화진흥원(NIA), (주)동현테크, 지능형(유비쿼터스)도시사업단, (주)TDL, (주)아이디엔

www.ksii.or.kr
A-3-2 VANETs에서 경고 메시지 전달을 위한 하이브리드 지능형 방송 알고리즘 33
김일화, 배인현(대구가톨릭대), Stephan Olanu(Old Dominion Univ.)
A-3-3 WSN에서 센서 노드 메시지를 이용한 라우팅 알고리즘 .. 35
장용재, 이성근, 고진현(순천대)
A-3-4 P2P/PBT를 활용한 연구망상의 첨단연구 논리네트워크 설계 37
김창희, 조광동(KIST)
A-3-5 3차원 지형정보를 고려한 무선 네트워크 아키텍처 최적화 도구 설계 39
김명일(KIST), 전병석(오하이오주립대)
A-3-6 WSN에서 흔 카운트를 이용한 큐 관리 메커니즘 ... 41
장용재, 이성근, 고진성(순천대)

A-4 인터넷정보통신 4

A-4-1 무선 통신 기반의 RFID를 이용한 Web POS 활용 ... 45
주한석(성옥대)
A-4-2 P2P 라이브 멀티미디어 스트리밍 서비스를 위한 제생 동기화 메커니즘 47
변태형, 이우재(이화여대)
A-4-3 무선센서네트워크에서 혼잡제어를 위한 혼잡 감지 및 제어기법 분류 연구 49
이강원, 허성남(경희대)
A-4-4 콘텐츠공유를 위한 무선USB의 성능분석 ... 51
강민구, 신호진(한국대), 염상철, 김현태(한국전산학회), 고희용, 김철민(가온미디어㈜)
A-4-5 Using Hadoop Batch Processing with SQL Integration in Cloud Computing Data Storage ... 53
Khoa Thi Van, 김영우(동국대)

B-1 인터넷정보보안 1

B-1-1 개인정보 보호를 위한 휴대 및 제어 메커니즘 설계 ... 59
김유진, 조승범(성신여대)
B-1-2 인터넷에서 호스트의 행위정보를 통한 악성코드 감염 호스트 탐지 시스템 61
신성현, 한영목(경원대)
B-1-3 Adjusting The Circumstance Between Levels of Protection 63
of Internal Information and Privacy Employees’
Jason, Seok In Jung(Ryerson Univ.), 김진형, 김영종(서울여대)
B-1-4 확장된 IP 해더 정보 기반의 NAT 내부 호스트 탐지 알고리즘 ... 65
김주혁, 한영목(경원대), 이태진(KSA)
B-1-5 프라이버시를 보호하기 위한 요소 기술 연구 ... 67
김진형, 김영종, 황준(서울여대), 김재현(성균관대)
무선센서네트워크에서 혼잡제어를 위한 혼잡 감지 및 제어기술 분류 연구

이가원, 허의남
경희대학교 컴퓨터공학과
(gawon, johnhuh)@khu.ac.kr

Ga-Won Lee, Eui-Nam Huh
Dept. of Computer Engineering, Kyung Hee Univ.

요 약
무선 센서 네트워크 망에서 혼잡에 의한 데이터 누락 및 패킷 재전송의 증폭은 오비어드가 매우 큰 작업이다. 따라서 재전송에 따른 오비어드를 줄이고 혼잡을 피하기 위하여 많은 연구들이 진행되어 왔다. 제한 상황과 네트워크 비리 정보를 이용해 혼잡을 감지하고 혼잡 정보를 전송하여 촉발하여 발생하는 방법, 이 과정에서 버려지는 패킷에 대한 문제를 해결하기 위한 많은 방법들이 제시되었다. 본 논문에서는 이러한 혼잡 감지 및 혼잡제어 기법을 분류하고, 공통적으로 드나다는 혼잡 정보를 공유하기 위한 별도의 트래픽이 많이 발생하는 문제 및 신뢰성을 보장하지 않는 문제 등을 분석하여 더 나은 혼잡 감지 기법 연구에 본 기법들이 사용될 수 있도록 한다.

1. 서 론
최근 IT 기술의 발전과 유비쿼터스 환경은 각종 분야와 결합하여 현대 생활에 많은 편리함을 제공하며, 특히 유비쿼터스 기술은 무선 센서 네트워크를 기반으로 빠르게 발전하고 있다. 특히 연구 및 교육을 위한 인프라가 늘어나면서 USN 국제 공동 연구가 활발히 진행되고 있다.

이에 따라 다양한 WSN은 이기적 관계에 포함 관리되고 정보가 공유되는 등 USN은 이전의 단일 소규모 네트워크에서 대규모 네트워크로 변화되는 추세이다. WSN의 일부 역시 기존의 단순 감시 및 정보수집에서 Mission Critical한 업무를 수행하도록 변화되고 있으며 이에 따라 QoS 보장의 중요성이 대두되고 있다. 센서 네트워크의 Sink 중심으로 이루어진 토폴로지 아래 데터를 무선 통신을 통해 Sink로 전달하는 특성으로 인해 Sink 주변의 네트워크에는 혼잡 발생확률이 높은 특성을 갖는다. 또한 무선 통신, 소형 저전력 특성을 갖는 WSN의 특성에 맞는 혼잡 감지 및 제어 기법이 요구된다. 혼잡으로 인해 발생한 패킷 손실을 복구하기 위한 재전송 및 전송 지연은 불필요한 트래픽을 증가시키고 네트워크 혼잡을 가중시킴으로써 전력 소모가 커지고 결과적으로 네트워크 라이프타임의 감소를 가져온다. 센서 네트워크에서의 혼잡 제어 기법은 이를 고려하여 데이터 전송 횟수를 줄여 네트워크의 수명을 늘리는데 그 목적이 있다.

본 논문에서는 센서 네트워크 전송 신뢰성을 보장하기 위한 혼잡 제어 기법들을 살펴보고, 이를 분류함으로써 네트워크 상태 및 어플리케이션에 따라 최적의 혼잡제어 기법 및 전송 신뢰성 보장 기법을 사용할 수 있도록 정리한다. 또한 본 연구를 통해 새로운 혼잡제어 기법을 도출할 수 있도록 한다.

2. 혼잡 제어 기법
센서 네트워크에서 혼잡이 발생하면 무선 통신 경쟁으로 인한 패킷 충돌이나 버퍼 오비어드로 인한 패킷 드랍이 발생할 수 있다. 이런 데이터 손실은 재전송에 따른 증폭 및 에너지 효율로의 문제를 가중으로써 센서 네트워크의 특성에 맞는 혼잡 제어 기법이 필요하다. 이러한 문제점을 해결하기 위하여 이러한 혼잡 제어 기법이 연구되었고, 표 1은 기법의 종류별 분류를 나타낸다.

<table>
<thead>
<tr>
<th>종류</th>
<th>기법</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data 양을 조절</td>
<td>ESRIT[1], Fusion[2]</td>
</tr>
<tr>
<td>Queue 상태에 따라 혼잡 담당</td>
<td>CODA[3], ACT[4]</td>
</tr>
<tr>
<td>패킷 서비스 시간</td>
<td>Congestion Control and Fairness for ManytoOne Routing[5]</td>
</tr>
<tr>
<td>혼잡 상태 전달</td>
<td>SenTCP[6]</td>
</tr>
<tr>
<td>우선순위 부여</td>
<td>PCCP[7]</td>
</tr>
</tbody>
</table>
주기와 Sink의 데이터 요구량에 따른 수신량을 산출하여 취약적으로 동작하는 영역을 도출한다. 그러나 필드 전체에 대한 신뢰도 적용을 둘 각 이벤트의 신뢰도를 고려한 것이 아니기 때문에 다수의 이벤트에 대한 fairness가 부족하다. 또한 혼잡을 제어하기 위해 Sink가 모든 센서 노드에 전송량 조절 패킷을 Broadcasting 하므로 혼잡 제어를 위한 예지 노드도 크다는 단점이 있다.

Congestion Detection and Avoidance(CODA)[3]는 무보 노드에 Queue를 두어 한계를 넘어선 Congestion flag를 셋팅하여 보낼 수 있게 채널을 방지하는 기법이며, 노드 범위 상대 채널 부하를 통한 채널 통상, 패킷의 도착 시간 등을 계산하여 혼잡을 감지하고 제어할 수 있는 특징을 가진다. 그러나 혼잡 발생 시 패킷 드랍으로 혼잡은 제어될 수 없어도 데이터 신뢰성 보장을 불가능하며, 채널 통상 상태를 파악하기 위한 예지 노드가 필요하다.

Adaptive Congestion Control(ACCT)[4] 기법에서는 큐 감사를 통해 다양 큐 임계값을 사용하여 혼잡 감지, 혼잡 발생 시 패킷 전송 간격을 조절하는 적응적 허용 제어 기법과 압축 기법을 동작한다. 허용 제어 기법에서는 Sink 주변 센서 노드의 큐 오버플로우를 방지함으로써 데이터 손실을 막고, 데이터 전송량 조절을 위해 압축을 사용하여 fairness를 향상시키고자 하였다. 그러나 혼잡 제어 패킷으로 인한 불필요한 트래픽을 방지하기 위해 일반 데이터 패킷 헤더에 혼잡 상태 bit를 추가하였으며, 일반 데이터의 손실이 발생한 경우 혼잡 여부를 알려서 데이터를 해제하지 않으려 하며, ACCT가 발생 시 허용 제어로의 전환 단계가 필요하다고 한다.

패킷 서비스 시간을 이용하여 가능한 서비스 시간과 혼잡을 감지하는 Congestion control and fairness(CCF)[5] 기법은, 서비스 데이터가 각 노드수에 따라 전송량을 조절함으로써 혼잡을 제어한다. CCF는 패킷 예측이 높거나 노드트 전송 데이터 양이 다른 경우에 효율이 낮아질 수 있다.

Priority-based congestion control protocol(PPCP)[7]에서는 노드별로 우선순위를 부여하며 혼잡 발생 시 우선순위에 따라 패킷을 전송한다. 혼잡이 심해져서 무보노드로 패킷을 전송할 수 없는 경우에는 새로운 무보노드를 찾아서 여러 경로로 패킷 전송을 시도한다.

3. 결론
본 논문에서는 WSN에서 혼잡 제어를 위한 기법을 분류하고 정립하였다. TCP와는 달리 제한된 리소스와 에너지를 가진 무선 센서 네트워크에는 이에 맞는 구조로 변형되어 적용되어야 하며, 이에 다양한 기제들이 각 종류별로 연구되고 있다. 혼잡 제어는 1) WSN 데이터 양을 조절하는 방법 2) Queue 상태에 따라 혼잡을 퇴치하는 방법 3) 패킷 서비스 시간을 이용한 혼잡 탐지 방법 4) 혼잡 상태를 이용한 혼잡 제어 5) 신뢰성 제어 및 부하를 이용한 혼잡 제어 등이 있으며, 네트워크 상황에따라 데이터를 전송하는 방법 등이 있다. 네트워크 상황에따라 데이터를 전송하는 방법 등이 있다.